Skip to content

Matrix Analysis and Application

1 Linear Equations(线性方程组)

  • Gaussian Elimination (高斯消去法):就是用以上三种操作,选择主元,消去主元所在列以下的元素,直到变为行阶梯型。
  • Gauss-Jordan Method (高斯约当法):将主元所在列以上的部分也变为零。
  • Partial Pivoting (部分主元法):每次将当前基本列中最大元素所在方程与原主元所在方程交换位置,再用高斯消去法。
  • Complete Pivoting (全部主元法):将当前主元所在子矩阵中最大元素作为本次步骤的主元,也就是除了可以交换行,也可以交换列。交换列时需同时交换未知数。

2 Matrix Algebra(矩阵代数)

For matrices Amn and Bnm, trace(AB) = trace(BA).
trace(ABC) = trace(BCA) = trace(CAB).
trace(ABC) = trace(BCA)

trace(AB) = trace(BA)

Sherman-Morrison Formula:

2.1 LU Factorization (LU 分解)

  • A = LU
  • PA = LU, 系数相反数
  • Existence of LU Factors

3 Vector Spaces (向量空间)

3.1 Vector Spaces and Subspaces

3.1.1 Vector Space (向量空间)

3.1.2 Subspaces (子空间)

  • closure property for vector addition
  • closure property for scalar multiplication

3.2 Four Fundamental Subspaces (四个基本子空间)

3.2.1 Range Spaces (值域空间)

3.2.2 Nullspace (零空间)

3.3 Linear Independence (线性独立)

3.4 Basis and Dimension

4 Linear Transformations(线性变换)

4.1 Introduction

  • Linear operator (线性算子)

4.2 Invariant Subspaces(不变子空间)

5 Norms and Inner Products (模和内积)

5.1 Vector Norms

5.2 Matrix Norms

  • Frobenius-norm,
  • 1-norm, the largest absolute column sum
  • 2-norm
  • ∞-norm, the largest absolute row sum

5.3 Orthogonal Vectors (正交向量)

  • Orthonormal Sets (标准正交基)
  • Fourier Expansions (傅里叶展开)

5.4 Gram-Schmidt Procedure (施密特)

  • Gram-Schmidt Procedure (施密特)
  • Modified Gram-Schmidt Algorithm (施密特)

5.5 Unitary and Orthogonal Matrices (酉矩阵)

5.6 Householder reduction

5.7 Given reduction

5.8 Core-Nilpotent Decomposition

6 Determinants

7 Eigenvalues and Eigenvectors

8 See Also